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ABSTRACT

This work presents concepts and results in the fields of mathematical

modelling, economics and stability analysis. A coupled renewal-differential

equation structure is presented as a modelling form for systems possessing

hereditary characteristics, and this structure is applied to a model of the

Austrian theory of business cycles. For realistic conditions, the system is

shown to have an infinite number of poles,and conditions are presented which

are both necessary and sufficient for all poles to lie strictly in the left half

plane.
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I. INTRODUCTION

The Time Delay Structure

In order to describe or predict the behavior of a physical system, a

common procedure is to represent the various physical variable values at

any time t as a finite dimensional vector x(t) and to assume that the rate of

change of x(t) depends only on quantities measurable at time t, leading to

the ordinary differential equation system

dt) = x' (t) = f(x(t), t), x(0) = x0 . (1.1)

The class of physical systems which can adequately be described by

(1.1) is large, yet systems in physiology, economics or sociology, among

others, often require a more sophisticated mathematical structure. For exam-

ple, the number of human births at any time clearly depends on the number of

women of childbearing age alive nine months previously. Systems of the above

form lead to a modelling structure of equations with time delay terms and which

may be algebraic, differential or integral in form with single or multiple

delays.

There are many examples in the literature of the use of such time

delay equations in modelling diverse problems. Lotka [1] considered the

problem of industrial replacement with the model

p(t) + t f(s) p(t - s) ds = 1, (1.2)

where p(t) is the probability that an individual machine survives at least

t years, f(t) is the replacement rate and the number of machines in use is

constrained to being a constant. Wangersky and Cunningham [2] analyzed

the effects of reaction time delay on prey-predator relationships by using as

a model the equations

x' (t) = A x (t) - A x (t /K - Klx(t) y (t) (1.3)

y' (t) = K2 x (t - Tr) y (t - T) - my(t), (1.4)
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where x(t) and y(t) are respectively the number of prey and predator at time

t, T is the reaction time delay and A,K , K1 ,K 2 and m are various constants.

A more general form of (1.2), the renewal equation, was used by Lotka [3]

in his fundamental work on the dynamic behavior of the age structure of a

general population. Denoting by b(t) the number of births at any time t, by

b*(t) the number of births due to the population alive at time zero and by

m(t) the maternity function, "Lotka' s Equation" is given by

b(t) = b*(t) + J0 b(t - T) m(r) dT. (1.5)

The structure of (1.5) seems to be especially broad in its applica-

tions, having been used for studies in solid state physics [4], plasma

dynamics [5] and biology [6]. Such a (vector) form should be considered in

any attempt to model large economic processes, since many certainly possess

a preponderant hereditary nature. Unfortunately, the analysis of renewal

systems becomes increasingly difficult as the system order increases. One

purpose of this work is to illustrate how certain simplifying assumptions can

be made about a system to reduce this complexity. Specifically, the equa-

tion structure to be examined is of the form

x(t) = q(t) + jt0 B(t - 7) x(T) dT + Cv(t) (1.6)

v' (t) = Dx (t) + Ev(t), v(0) = v, (1.7)

where x(t) and g(t) are n-vectors, v(t) is an m-vector and B(t), C, D and E are

nxn, mxn, nxm and mxm matrices respectively. While at first glance

equations (1. 6) and (1. 7) seem more complex than an ordinary vector renew-

al equation, they should be considered conceptually as an n order renewal

system coupled to an mth order differential system to model an (m + n)th

order renewal process. The following section gives the motivation for an

economic problem to which the above structure will be applied.

Motivation

The business cycle is unarguably a physical process of paramount

importance. A "run-away" inflation in Germany at the close of World War I
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effectively wiped out the life savings of millions of Germans and the Great

Depression caused unbelievable world-wide social agony. Whether the

evils of depression exceed those of inflation is a question of at most aca-

demic interest; the problem is to control a country' s economic behavior

between these two extremes. As governments' powers and influence have

grown, their abilities to influence a country' s economic posture have in-

creased, and the monetary control procedures are now hopefully available.

The problem, then, is to recognize at an early time the advent of inflationary

or deflationary factors. As an example that such recognition is not at all

simple, exactly one week before the crash of 1929, eminent Yale economist

Irving Fisher announced that the American economy was moving on a "...

permanently high plateau" [7].

Modern economists apply one of two methods in their "prognostic"

attempts. The first of these involves the use of econometric models of an

empirical-statistical nature. All such models have in common a relatively

short-term forecastive ability, which may or may not be a liability, and an

almost overwhelming complexity, certainly a liability. The Wharton Econo-

metric andForecastingUnit model, for example, consists of 52 stochastic

equations, 29 identities, 144 statistically determined variables and 117

endogenousandexogenous variables [8]. Such complexity, besides causing

computational problems, also tends to obscure the possible existence of

fundamental economic factors which, if completely understood, might lead

to a more basic understanding of the economic process. These substrative

concepts form the basis of the second forecastive approach, a more qualita-

tive treatment.

Qualitative economic theories attempt to present a foundation that

simply describes the system' s aggregate behavior, yet is comprehensive

enough to allow explanation of the myriad of peripheral activities. Since

Adam Smith' s Wealth of Nations [9], countless theories have been propounded,
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and some, like Smith' s, are completely valid given the circumstances under

which they were formulated. Changing conditions, however, have shown

even the best of these to be dated. To discover whether or not any particu-

lar theory will prove independent of the events surrounding its inception, it

should be modelled mathematically. This allows a testing procedure far more

general than a mere comparison with past history. Although some attempts

have been made along these lines (see in particular reference [8], Chapter 14),

there still exist many qualitative theories which have not been quantitatively

expressed. This work will present a simple model of one of these, the

Austrian theory [10] of business cycles.

The Austrian theory, as expounded by Ludwig von Mises [11] and

F. A. Hayek [12], is basically a monetary theory of the cycle. If an economy

has a fixed supply of money, that amount available for investment is a func-

tion of the populace' s time preference for consumption. If the people are in

a buying mood, only a small percentage of their income is "saved" through

savings accounts, insurance policies, stocks and bonds, and the interest

rate will rise. If, on the other hand, the time preference is slanted toward

future consumption, larger savings are made and the interest rate drops.

Turning now to the other half of the investment process, the Austrian theory

divides industry into two sections, the capital goods industries and the

consumer-goods industries. The capital-goods section is characterized

mainly by its long-term aspects. The building of a steel mill, for example,

requires considerable time and continued investments as work progresses.

Such investments, then,should be made at low interest rate conditions, since

these indicate future consumer desire. The consumer-goods industries,

conversely, are more quickly expanded, and should expand when the interest

rate is high, indicating an immediate demand for goods. The overall process

seems stable, since the availability of consumer goods is increased

when the demand for them is high, and the entrepreneur builds for future

consumption when society is saving.
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Suppose now that the government intrudes into this investment

process by credit expansion through federal banks,, As credit is created, the

interest rate drops and it appears to the entrepreneur that consumer time pre-

ferences have lengthened. This clearly calls for a shifting to capital-goods

expansion, but as the excess money filters down to the consumer, he attempts

to assert this increase in buying power in accordance with his old saving/

consumption proportions. This, of course, completely startles the business

community, which had been misled by the drop in interest rates into believing

that these proportions had changed. As soon as the government decides to

end its inflationary credit policies, as it must sooner or later, the continued

investments required for the capital-goods industries are not obtainable at

profitable interest rates, and previous investments are found to have been ill-

conceived. The only recourse is liquidation of certain projects, signalling

the beginning of the depression. The recovery period begins only when the

capital-goods/consumer-goods investment proportions are in agreement with

the consumption characteristics of the individual buyer.

While this is only a brief summary of the Austrian theory, it does

cover the main concepts and provides a starting point for the mathematical

modelling process.

Formulation of Model and Summary of Results

The model to be presented will characterize the Austrian theory at

least locally. That is, a linear model will be formulated in an attempt to

describe small deviations of the physical process from the trend. Suppose x(t)

is defined to be the investment in capital-goods industries differing from the

trend, and consider the viewpoint the entrepreneur takes in deciding whether

or not to invest in x(t). Recalling that such industries have long completion

times, our entrepreneur would certainly consider the activity in this sector

over the past several years. The existence of several steel mills under

construction would, of course, tend to dampen interest in this area. This

could be expressed mathematically by
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x(t) c--J0 p(T) X (t - T) dT, (1.8)

where p(t), non-negative in general, might be called an "influence" function.

If i(t) is defined as the difference between the current rate of interest and the

trend, the theory states that x(t) will tend to be positive when i(t) is negative;

thus,

x(t) c - i(t). (1.9)

Turning now to the investment in consumer-goods industries as

differing from the trend, denoted by v(t), it would be possible to structure a

modelling equation exactly as (1. 8) and (1. 9). However, the time-delays in

such industries are of comparatively short duration, and the system model is

simplified if it is assumed that this faster response process can be modelled

by an ordinary differential equation. That is, since an investor in a consum-

er-goods industry should change his position with respect to the instantaneous

levels of investment activity, the model should express

v' (t) cc - v(t). (1.10)

This investment behavior as a function of the interest rate is also of a some-

what different character. Since consumer-goods production can increase so

rapidly, a high interest rate should signal further increases; that is, the

derivative of v(t) should be proportional to i(t),

v' (t) c: i(t). (1.11)

While the system of proportionalities (1.8) - (1.11) could now be

combined in a mathematical model, a more appropriate system of equations

results from an additional consideration. The changes are to be concerned

with i(t), since the most modern economic theories are not so directly tied to

the interest rate "per se". There is certainly a question of the entrepreneur' s

ability to recognize the interest rate trend, and thus, use deviations from

this trend in any decision process. Perhaps the best approximation to the
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business community' s behavior is to assume that information concerning the

interest rate is actually gained through a study of the existing market invest-

ment structure. That is, increases in capital-goods investment are tied

more directly to decreases in consumer-goods investment than to any interest

rate deviations. This line of reasoning leads to a change in proportionalities

(1.9) and (1.11) to

x(t) c - v(t) (1.12)

and

v' (t) cI - x(t). (1.13)

The government' s credit expansion policies may now be denoted separately

by g(t) and considered as a system input,

x(t) c g(t) (1.14)

Combining (1.8), (1.10), (1.12), (1.13) and (1.14) with appropriate constants

of proportionality, there results

x(t) = g(t) - f0 p(t - T) x (T)dT -Tav(t) (1.15)

v' (t) = -y x(t) - S v(t), v(O) = v 0 . (1.16)

These equations are structurally identical to (1.6) and (1.7), and the modell-

ing process has indicated the reduction to a minimum of the order of the re-

newal equation portion of the mathematical model.

With the qualitative Austrian theory now quantitatively expressed,

the questions become mathematical in nature. In Chapter II, equations

(1.6) and (1.7) are imbedded in a more general structure and existing theorems

utilized to provide conditions which insure the existence, uniqueness and

transformability of solutions. Some discussion is given concerning the cal-

culation of numerical results, with the differential character of (1. 6) - (1.7)

emphasized. Chapter III is devoted to a system stability analysis. With the

determinental equation expressed as a finite exponential series, necessary
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and sufficient conditions for all zeros to lie strictly in the left half plane are

presented. The results are a generalization of those of Pontryagin [13] for

exponential polynomials. Finally, an application is presented to illustrate

the use of the stability conditions, and additional economic implications

are mentioned.
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II. EXISTENCE, UNIQUENESS AND

NUMERICAL RESULTS

This section will present conditions which will insure the existence,

uniqueness and transformability of solutions. To utilize existing theorems,

system (1. 6) - (1. 7) will be imbedded in a more general structure. Equation

(1. 7) may be integrated on both sides and, with the appropriate initial condi-

tion, becomes

v(t) - = 0 { D x (T) + E v(T) 3 dT. (2.1)

Solving (2 .1) for v(t) and substituting the result in (1. 6) yields

t tx(t)= g(t)+Cv +C + B(t - T) X(T) dT + C fS 0 Dx (T) + EV(T) } dT

and thus

x(t) (t) + Cv 0 + t [B(t - T) + CD CE [X(T)

v(t)t v J D EJv(r l dT.
V~~~--J L J(2.2)

Hence, equations (1.6) - (1.7) may be expressed in the vector form

z(t) = h(t) + ft0 A(t - T) Z(T) dT. (2.3)

It is of interest to note that the initial condition, v
0 , appears in (2.1) in a

manner analogous to g(t) in (1. 6). Although g(t) is just the input, g(O) + Cv0

is also the initial value of x(t). If it is desired to arbitrarily set an initial

condition for x(t), g(t) must be defined appropriately for t = 0 or x(O) will be

multiply defined. Thus, the input set for (2 .3) also defines the space of

applicable initial conditions.
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The proofs of the following theorems are extensions to the vector

case of available proofs [14] for the scalar form of (2.3), and will not be

presented here. Introduce the vector and matrix norms
n

11Z = I zil
i= 1

and
n

IIAII = z laijl.
-i,j=1

Theorem 2.1. If

(i) Ilh(t)I| < c for all t e [0, t
0
] and

(ii) IIA(t)Il < m for all t ¢ [0, to],

then the solution to (2. 3) exists and is unique

for t e[O,t ], and is continuous if h(t) is continuous.

Theorem 2.2. Let h(t) be continuous. If for some

a there exist two positive constants c1 and

c
2

such that

(i) Ih(t)1l< c 1 e for all t > 0, and

(ii) JW e -atll(t)II dt =C 2 < 1,

then at
cle

Z1(t)ll < 1 - c2

for all t > 0, and the Laplace transform of z(t) exists.

The basic tool in the proof of the above theorems is the technique

of successive approximations. This technique may also be used to find con-

ditions which insure that z(t) is Lesbeque integrable, Riemann integrable or

of bounded variation ([14], pp. 217-29).

The foregoing imbedding has emphasized the integral characteristics

of equations (1. 6) and (1. 7). Their differential character is perhaps best

illustrated by noting the simplifications in numerical solution techniques

which the differential character of (1.7) makes possible. Figure 1 illustrates
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THE NUMERICAL SOLUTION

Solution desired for 0 < t < T. Choose At for

rectangular integration accuracy; N = T/At.

Read vo, c, 8 and y. Store

g(ti ) and p(ti), i = 0, 1, N.

Set DEQB initial and maximum step

size and error specification; i = 0.

Enter DEQB to extend solution

from t. to t +

ate exit; t = tti<t <ti+l
.

Final exit; t =

ess available for v(t0 ); v(t i + 1) and x(

uired. x(t i ) stored

t
i
) + [g(t i + 1) -g(ti)][t0 - t i ] /At; Integral

tj) P(t i j + ) Atpox(ti ) + [x(t i ) - X(til)][t0 -

v' (tO ) calculated.

Figure 1
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- ti]/t};



the utilization made of a sophisticated, fast differential equation solving

subroutine [15] in solving (1. 15) and (1. 16) for particular values of g(t),

p(t), or, ,y and v 0 . For a solution desired for 0 < t < T, an N is chosen

such that to = 0, t = T and At, defined by At = t 1- t., i < N, is sufficient-
0 n i+l 1

ly small to allow good approximations to (1.15) by a rectangular integration

process with rectangles of width At. The input and influence function values

are stored for appropriate values of i, and an error specification set for the

subroutine (DEQB). DEQB is then entered with the initial value v and with

i = 0, and instructed to find v(t.i+ under the constraints of (1 .16). At

various times t 0 , t i < t 0 < ti+l' control is returned to the main program to

evalutate v' (t 0 ). The input, g(t 0 ), is found by linear interpolation and the

convolution integral approximated by

i
At s x(tj) p(ti _ j+l ) + tpo(x(ti ) + (x(t

i
) -X(ti l))(t -t )/t) 

j=o0

The subroutine itself provides an initial guess for v(t ), so v' (t ) is now

calculated and control returned to DEQB. As the exit is made from DEQB at

t o = ti+ , v(ti+ ) and x(ti+ ) are available for output, x(ti+ ) is stored, i is

incremented and control is returned to the subroutine for the next iteration.

While memory storage needs are large for evaluation of the convolu-

tion integral, additional differential equations could be added to (1.15) and

(1.16) with only linearly increasing requirements. The subroutine provides

automatic step size correction to minimally meet specified error contraints,

which leaves only the evaluation of the integral for the programmer. While

only a crude rectangular approximation was used for demonstration purposes,

even rather critical constant solutions were evaluated within acceptable

limits. These and other solutions will be presented later as examples.
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III. STABILITY CONDITIONS

With conditions now having been given insuring the existence,

uniqueness and exponential boundedness of solutions, the main questions

remaining concern system stability. The results to be presented are quite

general, applying to (1.6) - (1.7), but algebraic considerations will require

use of equations (1.15) and (1.16) in illustrative examples.

If g(t) and p(t) in (1.15) - (1.16) satisfy the conditions which

allow application of the Laplace Transform, and if v0 = 0, then

X(z 1 + P(z) a -
V(z) z+

and the system stability is clearly a function of the location of the zeros of

the determinantal equation.

D(z) = z + z P(z) + , P(z) + (B - of y). (3.1)

Since the difficulty in finding the zero locations of (3.1) depends on the form

of P(z), a particular p(t),

m
p t, 0 < t< T

p (t) = i =0
3

(3.2)

0 , T<t

will be considered. This form is chosen for two reasons. First, the heredi-

tary character of the system can certainly be considered to extend back in

time only some finite length. Second, by the Stone-Weierstrass theorem

[16], any function continuous on any closed and bounded interval [a,b] may

be approximated uniformly there by a polynomial. Thus,

m T
P(z) = f pit e dt

j= oo

13



-zT
=p+ge Po T e z-zT -zT P

1 ze - 11 z z2 +z2

-zT i! T Pmm!

z - p e C zi+l + (3. 3)

Then
m i

D(z) = z + (z + ) { Z [-P e - '
z T i!T z-,- + Z--ly)

j= 0 = + 

(3.4)

Since the zeros of D(z) are the quantities of interest, define D15 (z) = e ZTD(z)

and the zeros of D(z) are just those of D(z). Hence,

-zJ zT
D(z) = { z + (z + ) + (z + ezT

j=0 j+l

- (z + B) { p [ +1] (3.5)
j=0 i=O0

It is easily seen that D(z) may, in general, have an infinite number of zeros.

This causes two serious obstacles to arise in stability studies. First, of

course, is the difficulty in locating "all" of the zeros. Then, even if it is

known th the zeros have strictly negative real parts, they may approach

the imaginary axis asymptotically, giving rise to undamped solutions. Com-

pared to the first problem, this latter one might be considered somewhat

pathological, although it will not be neglected in the ensuing work.
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Perhaps the most useful results available in the area of zero location

for transcendental functions are those due to Pontryagin [13]. Basically, he

gives necessary and sufficient conditions for an exponential polynomial to

have all of its zeros strictly in the left half plane. Considering (3.5), it is

seen that D(z) is not an exponential polynomial, and the obvious procedure

would be to examine the zeros of zm+l D(z). This approach would certainly

be valid if the zeros of D(z) and zm+l D(z) were coincident; that is, if D(z)

had an (m+l)s t order pole at the origin. A simple counterexample shows,

however, that this supposition is not always true. Consider (3 .5) for a p(t)

of the form p tn for 0 < t < T and zero elsewhere. Then an evaluation at the

origin yields

Lim [zn+2 + (-y ) z + n !! pn] e
(z)O z- ° 0 n P

n+l 
z

- (Op + zp)( i! Tn-izn - i )

n+ 1
Z

which is indeterminate of the form 0/0. Applying L' Hospital' s Rule,

Lim n+2 zn+l+npnz+n!p ezT
D(Z) Iz=O z0 T[z + ( -o y)z n +

+ [(n+2) z n + l + (n+l) ( -y) zn+n! n] ezT

n-l1
- (Bpn+ Zpn) Z (n-i)i! Tn zni

i= 0
n

-n i! Tn-i n-i Lim }(n+l) zn
3

i=0

Lim [n! - (n-1) ! ] T Bpn
z-.0 { (n+l) zn n 0,

and ]D(z) is seen to have at most an n
t
h order pole at the origin. Thus,

15



n+l -
z D(z) will have at least a first order zero at the origin that D(z) does not

have. Unfortunately, use of Pontryagin' s results will only imply that under
n+ 1

no conditions can z D(z) possess only left half plane zeros, and there

is no way provided to treat the extraneous zero separately.

Since exponential polynomials have been shown to be of insufficient

generality for the study at hand, consideration will now be given to the zero

location problem of the next more general category of transcendental functions,

the finite exponential series. That is, transcendental functions of the form

Pl P2 m nz
H(z) = Z a z e (3.6)

m=-q n=O

will be considered. This set of functions clearly includes the determinental

equation of (1. 6) - (1.7) for influence functions of the form of (3.2), and in

fact is of sufficient generality to allow influence functions sectionally de-

scribable as (3.2) and hence only piecewise continuous. Such time sections,

however, must be rationally related, since the restriction of n in (3.6) to

integer values will require all time intervals to be integer multiples of some

base interval. Finite exponential series, as defined by (3.6), are closely

related to exponential polynomials, and the following results will be a gener-

alization of Pontryagin's basic work. The proofs of some of his theorems will

be utilized directly, others changed and still others corrected.

Two basic lemmas which will be used later will now be proven.

Lemma 3.1. If v(s)(t) is any non-zero polynomial in t of

degree s, then there exists a real number e such

that v (S)(exp (x + i (e + 2nrr))) is non-zero

for all real x and all integer n.

Proof. Since v )(exp z) is periodic with period 2iri,

the result will hold for all integer n if it holds

for n = 0. There clearly exist only s complex numbers

t which satisfy

(S)
v (t 0 )1O.
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(s)Then v (exp z
0
) = 0 if and only if

exp(z0 ) = to. For y (z = x +iy) in the interval

y0 < y< 2TT +yO, any y0' there are at most two such
(S)

z 0 S for each t o . Hence, v (exp z) has only 2s

zeros in any semi-infinite horizontal strip, of width

2 rr, in the complex plane. Thus, there exists an

infinity of numbers e, and in particular one, such that

v( S)(exp (x + is)) :/ 0 for all real x. Q.E.D.

Lemma 3.2. If 6(z) is any polynomial in cos z and sin z, of

degree s, not identically zero, then there exists

an e such that 6(e + 2nTT + iy) is non-zero for all

real y and integer n.

Proof. 6(z) is clearly periodic with period 2 Tr, and if the

result holds for n = 0, it therefore holds for all n.

Using a common variable substitution, let

u = (t+ 1/t) /2, v = (t- 1/t)/2i (3.7)

and for t = exp(iz), u = cos z and v = sin z.

Then substituting (3.7) for u and v in 6(u, v), the

resultant 6(t) clearly has 2s zeros. Every zero, z
0

,

of 6(z) must thus satisfy exp(iz 0) = t 0 , where to is a

zero of 6(t). Hence, for x in the interval x 0 < x<x0 + 2T,

6(z) has at most 4s zeros, and there exists an infinite

set of numbers e such that 6(e + iy) / 0 for all y. Q.E.D.

Now define h(z, t), a finite series in the two variables z and t, by

A Pl P2 m n
h(z, t) -= r a z t

m = -q n =mn

The finite exponential series, H(z), may thus be defined
AH(z) = h(z, exp(z)). (3.8)

17



From the discussions of the previous section, it will be assumed without

loss of generality that H(z) possesses no pole at the origin. It must also be

assumed throughout the remaining discussions that H(z) is not degenerate;

i.e., not only the coefficients am are non-zero and there exists an mo > O

such that a i O for some n 3 0O
mn
o

If there exists a non-zero coefficient a such that for all other
rs

rs
non-zero a , r > m and s > n or r > m and s > n, then a z t will be called

mn rs
the principal term of the finite series. This definition leads to the following

instability result.

Theorem 3.1. If h(z,t) has no principal term, then H(z) has an

infinite number of zeros with arbitrarily large

positive real parts.

Proof. Write

zqh(z, t) = 1 a zm+q ,n
mn

m = q n=O n

zqH(z) is thus an exponential polynomial. If h(z,t)

has no principal term, then neither does z h ( z, t) .

By Pontryagin' s first theorem, zqH(z) thus has an

infinite number of zeros with arbitrarily large posi-

tive real parts, and H(z) certainly possesses the same

property. Q.E.D.

If h(z,t) does possess a principal term, a consideration of the behavior of

H(z) along the imaginary axis will yield information concerning the location

of the zeros. For z imaginary, H(z) may be separated into its real and

imaginary parts by

Pm P.
H(iy) a 1 ym exp(iny)

m=-q n=0 mn

18



P P2 m
= E amn imym(cosy + isiny)n. (3.10)
m=-q n =

Then H(iy) may be written

P1 P2 (n) (n)
H(iy) = 7, y (n C) (cosy, siny) + i*m (cosy, siny)]

m -q n= 0(3.11)

(n) (n)where cp) (u,v) and (n)(u, v) are polynomials of degree n, homogeneous in

u and v. F(y) and G(y) are now defined by

Al PI P2 m (n)
F(y) = y ()P (cosy, siny), (3.12)

m=-q n=0

A P1 P2 m (n)
G(y) = P y , Y (cosy, siny), (3.13)

m=-q n=0 m

and hence

H(iy) = F(y) + i G(y). (3.14)

Examining the structure of F(y) and G(y), certain observations can be

made which will be useful later. F(y) and G(y) will clearly have no pole at

the origin. Suppose a function p(z, u, v) is defined by

A P1 P2 m (n)
p(z,u,v) = z ym (u,v) (3.15)

m=-q n=0 

where y ) (u,v) is a polynomial of degree n, homogeneous in u and v, and
(n) m (n) (n)

y( (cosy, siny) is formed as cp )(cosy, siny) and '( (cosy, siny) in (3.13).

Then F(y) and G(y) may be expressed as f(y, cosy, siny) and g(y, cosy, siny)

where f(z, u, v) and g(z, u,v) are of the form of p(z,u,v). Suppose further that

a principal term for p(z,u, v) is defined as expected. Then if h(z, t) has a
rs

principal term a z t , f(z, u, v) and g(z, u, v) will have principal terms
rs

zrp
s ) (u, v) and zr (S)(u,v) and conversely.

Suppose p(z,u,v) has a principal term zry (Su,v). Then define
r

(s) s (n)1
y¥ (u,v) z Yr (u,v) (3.16)

n=0
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and

Y ( ) *(s) (cosz, sinz). (3.17)

Such definitions lead to the following fundamental theorem.

r (s)
Theorem 3.2. Letp(z,u,v) have a principal term z y ( ) (u,v),

- Cs)and choose an e such that y* (e + znTr + iy)

is never zero for any real y. Define
A

P(z) = p(z, cos z, sin z) and assume that P(z)

has no pole at the origin. Then for k sufficiently

large, P(z) will have exactly 4 s k + r zeros in the

strip -2krT + C < x < 2kTT + e.

- (s)
Proof. If y, (z) can be shown to be not identically

zero for all z, Lemma 2 will imply the existence

of an appropriate s. Since y, (z) merely repre-
-(5) -(5)

sents either p( (z) or ( * (z), it may be shown

that neither of these functions is zero for all z.

Recalling (3.9), it is clear that an alternate form

for (3.10) may be given by

Pl P
H(i = a i y (cos(ny) + isin(ny)). (3.18)
m = - q n= O 

This implies the following:

if m= ... , -4, 0, 4, ... then

P(n) (cosy, siny) = amn cos(ny)

and

m(n) (cosy, siny) = amn sin(ny);m

if m= ...,-1, 3, 7, ... then

mp (n) (cosy, siny) = a sin(ny)
m mn
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and

(jm (cosy, siny) = -a cos(ny);

if m = ... , -2, 2, 6, ... then

(n) (cosy, siny) = -a cos(ny)
m mn

and

m() (cosy, siny) = -a sin(ny);~~m ~mn

if m= ... , -3, 1, 5, ... then

p ) (cosy, siny) = -a sin(ny)
m mn

and

(m
)

(cosy, siny) = a cos(ny)m mn

Suppose the principal term of H(iy) is a 1i y e 
rs

and for definiteness suppose r = 4k, some k. Then

cP (z) arO arl cos z + + as cos(sz) (3.19)

For p * (z) to be zero for all z, it clearly must

be zero for z = ix. Equation (3.19) then becomes

(SP)(z) = ar0+arlcosh x + ... + a cosh(sx). (3.20)

But since coshx is monotonically increasing for x > 0

and cosh n1 x > cosh n2x for nl > n2 and x > 0, (3.20)

clearly cannot be identically zero. Similar arguments
-(s)

hold for ~* (z) and for r = 4k+ 1, 4k + 2 and 4k + 3, any

k. With the existence of an appropriate e now shown,

and proceeding in a fashion similar to that in the proof

of Theorem 3. 1, write

Plp 2
m+q (n)

zqp(zlu, v) = Z 2 yz (u, v).
m= - q n=0 m

Then since p(z,u,v) has a principal term z y(s)(u, v),

z (z,u,v) will have a principal term zrqy(s)(u, v).
P 21 r21



Pontryagin' s third theorem may then be used to

imply that zqP(z) has, for sufficiently large k,

4sk+r+q zeros in the strip -2krr+e < x < 2krrt+e.

Since P(z) has no pole at the origin, it thus has

4sk+r zeros in the same strip, again for sufficiently

large k. Q.E.D.

A similar extension of Pontryagin' s second theorem leads to the following

result.

Theorem 3.3. If p(z, u,v) has no principal term, then P(z) has

an infinite number of non-real zeros.

Suppose now that h(z,t) has a principal term a z ts. Denote by
(s) rs
(S)(t) the polynomial coefficient of zr . Then h(z,t) may be written

r-1 s
r (s) mn 1 

h(z,t)= z , (t)+ E z a zm . (3.21)
m=-q n=O

Next, denote by Nk the number of zeros of H(z) in the semi-infinite strip de-

fined by x> 0, -2krr + e < y < 2kr + e. Denote by 0, (a,b) the overall angu-

lar variation of the vector w = H(iy) about the origin as y ranges from a to b.

Theorem 3.4.

Proof .

Let h(z,t) have a principal term a s ts and choose
(s) rs

an e such that X *s (exp(x + i (2nTr + e))) is non-zero

for all positive, real x and integer n. Assume that

H(z) has no zeros on the imaginary axis and no pole

at the origin. Then

w (-2kT + e, 2kr + e) = 2rr(2sk- Nk + r/2)+8
(3.22)

where 8k . 0 as k- co.

By the fundamental theorem of algebra, ] (s)(t) can be

identically zero only if it is the zero polynomial. But

this would imply that a = 0, a contradiction by
rs
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definition of a principal term. By Lemma 3.1 then,

an appropriate e may be chosen. Since for z large the

leading term of H(z) is dominant, and H(z) has been

previously assumed to be non-degenerate, H(z) can

be written

H(z) = zrl (
s

) (exp(z)) [ 1 + 81] (3.23)

where 61- 0 as Iz|-o. By Lemma 3.1, there are

clearly no zeros of z r(S)(exp(z)) along any horizontal

line y = + 2krT + 6, k an integer, and the proof of

Lemma 1 implies that there will exist a positive real

number a such that z r (S) (exp (z)) will have no zero

on or to the right of the vertical line x = a. Consider

the rectangle Rka defined by 0 < x < a, -2kTr + e < Y <

2krr + e. Then the angular variation of w, as z tran-

verses the upper, lower and right sides of Rka, will
-r (s)exp(z))

differ from that of w z (exp(z)) only by a number

62 where 62- 0 as k - o. Since the boundary of Rka

has been shown to be free of poles and zeros, Cauchy' s

index theorem easily implies the desired result for w,

and hence for w. Q.E.D.

The following lemmas will complete the work preparatory to the final results.

Lemma 3.3. Let h(z,t) have a principal term. Then

w (a + e, b + e) = ) (a, b) + 6
3

(3.24)

where 63 - 0 as a -+co and b - + .

Proof. From the definition of w (a, b), it is clear that w (a,b)=

w (a, c) + w (c, b) for any c. It is also clear from (3.23)

that for lal large, w (a, a + e) differs little from the

angular variation due to y r(S)(exp(y)). But this varia-
5

tion is just Z ne. Thus
n=0
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s

w (a, a + 6) = Z ne + 64

n=0

where 6 4 - O as a -+ oo. Similarly,

S

w (b, b + e) = ne + 65
n=O0

where 8 5 - 0 as b-+ o. Then

w (a + e, b + e) = w (a, b) - w (a, a+e)+w* (b,b+e)

which implies

w (a + e, b + e)= w (a, b) + 6 3

where 6
3
- 0 as a- + oand b-+ o. Q.E.D.

Lemma 3.4. Let h(z, t) have a principal term a z t, and
rs

f(z, u, v) and g(z, u, v) have principal terms

zr r(S) (u,v) and zrr (S)(u, v) respectively. Then

for X and i, arbitrary real numbers not both zero, there

exists a number e such that k p(-)(e + iy) + 0, *)(e + iy) O

for all real y.

Proof. By definition, X (S) (z) + j(s)(z) is a polynomial in

cos z and sin z and if not identically zero for all z,

Lemma 2 will imply the desired result immediately, If

either p(S)(z) or T
( s )

(z) were zero for all z, an appropri-

ate choice of Xand I could be made such that the poly-

nomial would be always zero. However, the proof of

Theorem 3.2 clearly shows that neither cp * (z) nor

- (s)
*r .(z) can be zero for all z. The remaining possibility

is for c(s)(z) and (s) (z) to satisfy

-(S)p(z) = * S)(z) (3.25)

for some x and I, neither zero, and all z. This could

obviously occur iftp (n)(cos z, sin z) and ( r)(cos z, sin z)
r r
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were non-zero only for n = 0, and this would imply a

principal term for H(z) of the form ar z . But this can

occur only if H(z) is degenerate, a contradiction to a

fundamental hypothesis. With s now shown to be non-

zero, the proof of Theorem 3.2 is again examined, and

it is noted that (3.18), (3.19) and (3.20) imply that for

(3.25) to hold, it is necessary that

(Pr (cos z, sin z) = -/x rn (cos z, sin z) (3.26)

for all n < s. But this implies that

Re a i r(cos(nz) + i sin (s z)) 

= -L/A Im a rnir(cos(nz) + isin(nz)) (3.27)

for all n < s. For any value of r, however, (3.27) can be

shown to imply that a = 0, a final contradiction. Q.E.D.
rs

Lemma 3.5. Let h(z, t) have a principal term and write H(iy = F(y) +

i G(y). Suppose Aw (-2kTT, 2krT) = 4skTT+rrr+66 where

= + 1 and -n/2 < 6 6< rr/2. Then for X and p arbitrary

real numbers not both zero, xF(y) + PG(y) has only real

and simple zeros and

A [ G' (y) F(y) - G(y) F' (y) ] > 0 (3.28

for all y.

Proof. Let X and , be given and consider the curve traced by the

vector w = H(iy) as it subtends an angle within TT/2 radians

of 4sk+rr +r radians in the positive or negative direction as

y varies from -2krr to 2kTr. This curve intersects the line

xw' + pw" = 0 (w' + iw" = w) for at least 4ks+r distinct values

y, which implies that xF(y) + pG(y) has at least 4ks+r real

zeros for -2kr<y < 2kTr. By Lemma 3.3, the same result

holds for-2kTT + e < y < 2krr + e, any e, if k is sufficiently

large.
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By Lemma 3.4, choose an s such that Xcp * (e + iy)
- (s)

+ P j * (e + iy) is non-zero for all real y. Then by

Theorem 3.2, x F(y) + p G(y) willI have, for sufficiently

large k, no more than 4sk+r zeros for -2kTTr+e <y <

2kTr+e, and hence all the zeros are real and simple.

The simplicity of the zeros implies that the curve traced

by w always moves in a constant direction, and since

the velocity of rotation is given by

dw = G' (y) F(y) - G(y) F' (y)

dy F2 (y) + G2 (y)

clearly

A[G' (y) F(y) - G(y) F' (y) ] > 0

for all y. Q.E.D.

The final results are now presented.

Theorem 3.5. Suppose all the zeros of H(z) are strictly in the left half

plane, and write H(iy) = F(y) + iG(y). Then the zeros of

F(y) and G(y) are real, simple and alternate and G' (y) F(y) -

F' (y) G(y) > 0 for all y.

Proof. The contrapositive of Theorem 3.1 implies that h(z, t)

has a principal term. By Lemma 3.1, choose an e such

that 1
( s )

(exp (x + i (2nTT + e))) is non-zero for all posi-

tive real x and integer n. Applying Theorem 3.4, and

since Nk 0,

w (-2k17 + e, 2k + e) = 4ksrr + mr + Sk

where 6k- 0 as k- .o. For x = 1 and P =0, Lemmas3.3 and 3.5

imply that the zeros of F(y) are real and simple. For

k = 0 and p. = 1, the zeros of G(y) are similarly real and

simple. Lemma 3.5 also implies that

26



F(y) G' (y) - F' (y) G(y) > 0

for all real y, which,in turn, implies that the zeros of

F(y) and G(y) alternate. Q.E.D.

Theorem 3. 6. Let H(z) be non-degenerate with no pole at the origin

and write H(iy) = t(y) + i G(y). Then in order for all

of the zeros of H(z) to lie strictly in the left half plane,

each of the following conditions is both necessary and

sufficient:

(i) All of the zeros of F(y) and G(y) are real and alternate

and F(y) G' (y) - F' (y) G(y) > 0 for some y.

(ii) All of the zeros of F(y) are real and at each zero, yo0

of F(y), F' (y0 ) G(y0 ) < 0.

(iii) All the zeros of G(y) are real and at each zero, yo,

of G(y), F(y0 ) G' (y0 ) > 0.

Proof. Nece s sity.

The necessity of each condition is immediately obvious

from a consideration of Theorem 3. 5.

Sufficiency.

(i). Since the zeros of F(y) and G(y) are real, the

contrapositive of Theorem 3.3 implies that f(z, u, v) and

g(z, u,v) both have principal terms, and hence so does

h(z,t). By Lemma 3.2, an e exists completing the

hypothesis of Theorem 3.2 and F(y) and G(y) thus each

have 4sk + r real zeros for -2krT + e < y < 2 T + e,

k sufficiently large. The rotation of H(iy) is thus at

least +(rksTr + r) + ,/2 radians and hence

aw (-2kwT+e, 2kT + e) > 4ksTr + rr - iT/2.
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Then by Lemma 3.3,

Aw (-2krr, 2kn) > 4ksrr + rrr - rr/2

for k sufficiently large, and the results of Lemma 3.5

obviously hold implying

A[F(y) G' (y) - F' (y) G(y) ] > 0

for all y. Since F(y) G' (y) - F' (y) G(y) > 0 for some y

by hypothesis, A = + 1. Thus,

w (-2k1T, 2krr) > 4skTr + TTr - T/2 (3.29)

Now since the zeros of F(y) and G(y) alternate, they

are simple and H(z) has no imaginary zero. Use of

Lemma 3.1 completes the hypothesis of Theorem 3.4,

and

(-2krr + e, 2kn+ e) = 2rr(2sk - Nk+ r/2) + 6k

where 6k -.0 as k -o. By Lemma 3.3,

W*(-2kTT, 2k) = 4skTT + Trr -2 T N
k

+ 6k (3.30)

where k' - 0 as k -. c. Then for large k, (3.29) and

(3.30) imply that Nk = 0. Q.E.D.

(ii) and (iii). Proof of the sufficiency of conditions (ii)

and (iii) follows that of condition (i) closely, with the

two inequalities insuring the absence of imaginary zeros

and setting the direction of rotation of the vector H(iy).
Q.E.D.

The results of Theorem 3.6 have left only two problems to be solved

before definitive statements can be made concerning the asymptotic stability

of any particular system. The first of these, illustrated in some detail in a

following chapter, is the analytical difficulty involved in parametrically

satisfying one of the three conditions. The second, mentioned earlier in this

work, concerns the insufficiency of left half plane zero locations in implying

global asymptotic stability. The following lemma will answer certain questions

concerning this problem.
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Lemma 3.6. Let P(z) = [ p(t) } and p(t) = Z 1 P(z) I be a

well-defined Laplace transform pair and suppose

all poles of P(z) lie to the left of the line Re{z ] = -c,

where c is a strictly positive real number. Then

Lim p(t) = 0.
t- co

Proof. By definition, p (t) is given by

(t 1 Lim o+jy zt

p(t) = 2 rj y-Lim P(z)eZtdz
a-jy

where the path of integration is any line z = a, a constant

damping insuring the convergence of P(z). Clearly a = - c/2

will suffice, and thus
-. +jy

2

p(t) = 1 Lim
2 rrj y -, .

P(z)e dz.

2 - jy

Since the integration is for z = - c/2 + jw, - 0 <W<co, write

- c +jy2

p (t) = I Lim
2·rrj y -, *D S P(- 2 + jW

- c -jy
2

-e 2 et d(j)ct
e 2 ejwtd(jw)

and 2 + j y

Ip(t) < 1 Lim P + ) e d w.

- c -jy
2

But this implies
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-C
-t 1 Lim

Ip(t)l<e < rr y -e

-C
2 + j y

-c -jy
7

and since the path of integration is free of singularities

of P(z), the result immediately follows. Q.E.D.

This lemma implies the following theorem.

Theorem 3.7. Given the system of (1.6) - (1.7), suppose the deter-

minantal equation is expressable as (3.6) with the usual

aforementioned restrictions. Then the solutions of (1.6)-

(1.7) will approach zero as t - oX if there exists a real

number e > 0 such that H(z - e) has all its zeros strictly

in the left half plane.
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IV. CHARACTERISTICS OF MATHEMATICAL MODEL SOLUTIONS

Qualitative Characteristics

E. C. Bratt ([ 17], p. 204) in summarizing the contributions of the

Austrian school, states that the "...monetary overinvestment theorists have

shown little interest in statistical verification." Rothbard ([10], pp. 3-5),

a major Austrian supporter, believes that "economic theories cannot be

'tested' by historical or statistical fact.... Theory cannot emerge,

Phoenix-like, from a cauldron of statistics; neither can statistics be used

to test an economic theory." This dearth of factual numerical support for

the Austrian theory makes difficult the testing of the system mathematical

model, yet it can be shown that the model does admit to solutions which

agree qualitatively with the Austrian conclusions. These conclusions may

be summarized as follows:

(i) The boom period could continue indefinitely if credit could be

expanded indefinitely ([ 8], p. 332).

(ii) The capital-goods industries are capable of fluctuating more

widely than the consumer-goods industries ([10], pp. 16-17).

(iii) The capital-goods industries expand, in general, at the expense

of expansion in the consumer-goods sector, leading to an out-of-

phase cyclical behavior ([8] , pp. 332-3).

Figure 2 illustrates a particular numerical example whose solution

agrees with conclusion (i). Although this particular conclusion is often

attacked as "...seriously in error" ([ 8] , pp. 332-3), it is a basic tenet

of the Austrian theory and any valid model must admit to this type solution.

Solutions satisfying conclusion (ii) are easily obtained, merely increasing

the damping effects on v(t) and sharply truncating the credit expansion

input, as illustrated in Figure 3. Conclusion (iii) also is often the subject

of criticism, since at first glance it seems to deny the possibility of

depressed conditions existing in both industrial sectors. Figure 4, how-

ever, illustrates the proper implications of this conclusion, since the
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4
!

6
I

8
A

t

1

x(t) = g(t) - f 0.5 x(t-¶)dT - 1.5 v(t)
0

- x(t)

v' (t) = -2.0 v(t) - 1.5 x(t), v(O) = 0

Figure 2

- _- v (t)

32

4

2

0

-2

2

g(t)

L



THE CAPITAL-GOODS FLUCTUATION
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THE CYCLICAL SOLUTION
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capital-goods investment might become rapidly depressed before the

consumer-goods investment could recover. This implies an overall

depressed period followed by the out-of-phase cyclical behavior as the

system returns to its normal (zero) solution.

One final solution type concerns the existence of non-zero con-

stant trajectories under zero input conditions. Prior to the Great Depression,

the economy was considered a dynamic, always changing phenomenon.

A constantly depressed economy, for example, was considered an impossi-

bility. The events of the thirties proved an embarrassing counterexample,

as year after year idle men loafed next to idle machines. It was John

Maynard Keynes [18] who explained this paradox, simply noting that a

depressed economy could be in perfect economic balance even though in

the depths of social agony. Thus, any business cycle theory must admit

solutions which exhibit this economic balance/social imbalance charac-

teristic. Figure 5 illustrates such a constant solution, with a continuing

investment in the capital-goods industries above the norm and a correspond-

ing continuing investment in consumer-goods industries below the norm.

This, of course, corresponds to a continually inflated economy with no

continuing credit expansion.

Quantitative Characteristics

As previously mentioned, the quantitative aspects of the Austrian

theory are not presented by its proponents. While the required statistics are

available for individual industries, the Austrian theorists have not attempted

the dichotomization and compilation of such statistics necessary to support

their conjectures. The following is an attempt to characterize the cyclical

patterns of the two investment sectors (capital-goods and consumer goods) by

two specific quantities, the value of building permits and department store

sales, in a brief examination of the minor business cycle of 1921-1924.

The value of building permits issued was used to characterize the

investment in capital-goods industries. Since the construction industry
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A CONSTANT SOLUTION
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exhibits long delays and is historically hurt by tight-money situations, it

should approximate to some degree the overall investment nature of the

capital-goods industries. To approximate the consumer-goods sector, retail

department store sales was chosen. As the department stores vary their

stock levels to compensate for sales fluctuations, a rapid, short term invest-

ment process is carried out, typical of investment in consumer-goods

industries.

The raw data for the value of building permits issued and department

store sales (from [19], pp. 194-6) is presented in Figures 6 and 7, with the

trend chosen in each case as a linear least squares fit. The governmental

credit policies are presented in Figure 8, compiled from Rothbard([10], pp.

101 - 5). In the mathematical model, the influence function was chosen as

a constant for eighteen months duration, and the influence function amplitude

a, B, and y varied until the model solution minimized a least squares error

criterion for the period January, 1921, to July, 1922. With the parameters

then fixed at p = 0.5, a = 0.5, B = 3.5 and y = 1.0, the solution was extended

under the actual credit policy input to January, 1924. The model solution is

compared with the actual values in Figures 9 and 10.

The mathematical model solution does not fit the actual quantities

well in two respects; the building slump from January to July, 1922, is not

fitted and the rising department store sales after July, 1922, is lagged by

several months. It should be noted, however, that the Austrian theory itself

does not explain these results. Since government credit expansion monoton-

ically increased until July, 1922, neither a drop in building nor an increase

in consumer demand could be predicted. Either the Austrian theory is at fault

or, more likely, the use of relatively small portions of the economic process

to characterize larger segments is of limited accuracy. For example, factors

such as lumber prices and weather could cause fluctuations in the construction

industry but would not greatly affect the overall capital-goods investment

37



INDEX OF VALUE OF BUILDING PERMITS
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DEPARTMENT STORE SALES

JANUARY 1921 - JANUARY 1924

(July 1921 = 100)
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GOVERNMENT CREDIT EXPANSION

IN MILLIONS OF DOLLARS
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VALUE OF BUILDING PERMITS DEVIATION. FROM

THE TREND: IN PERCENT OF JULY 1921 VALUE
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DEPARTMENT STORE SALES DEVIATION FROM THE

TREND: IN PERCENT OF JULY 1921 SALES
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process. But even with these inaccuracies, a prognostic solution under

proposed credit policies would, in July of 1922, have indicated the results

of such a precipitous drop in monetary supply.
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V. A ZERO LOCATION PROBLEM

With some correspondence having been established between the

theory conclusions and the model solutions, this chapter will present a

specific numerical example illustrating the numerical applications of

Theorem 3.6. Suppose the system equations are given by

1
x(t) = g(t) - If 0.5 x (t-T)dT - a0v(t)

v'(t) = - 2.0 v(t) - y x(t), v(0) = 0,

and the system stability is to be studied as a function of the coupling

parameters a' and y. The zero locations are determined by

H(z) = [z + (2.5 - ay) + l/z] eZ - 0.5 - l/z,

and condition (i) will be utilized. Let z = x + iy, g = 2.5 - a y and

H(iy) = [i(y - l/y) + g] [cosy + isiny] - 0.5 + l/y,

which implies

F(y) = g cosy - (y - l/y) siny - 0.5

G(y) = g siny + (y - l/y) cosy + 1/y.

The zeros of F (y) will be examined first, utilizing the fundamental Theorem

3.2. The principal term of F (y)is-ysiny, hence

cp ( (cosy, siny) = - siny

and
(s)
-S )(z) = - sinz.

Then

,s (e + 2nn + iy) = - sin(e + 2nrr + iy)

is clearly non-zero for all real y and integer n if e = rr/2. It must now be

shown that F(y) has, for sufficiently large k, exactly 4k + 1 zeros (s = 1 in

this case) for - 2krr + r/2 < y < 2kTT +Tr/2. Figurell graphically illustrates

the following observations:

44



THE ZEROS OF F(y)
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(i) For g less than -0.5, F(y) will have no zero for 0 < y < n/2.

(ii) For t exactly -0.5, F(y) will have a double zero at y = 0.

(iii) For § greater than -0.5, F(y) will have exactly one zero for

0 < y < rr/2 .

(iv) For t > -0.5, F(y) will have exactly one zero in each open

interval nT +n1/2 < y < (n + 1)r +r/2, n = 1,2,....

The preceding observations, and noting that (y - 1/y) siny and cosy -0.5

are even functions of y, imply that F(y) has, for sufficiently large k,

exactly 4k + 1 zeros for - 2krT + r/2 < y < 2kTr + rr/2 if and only if _> - 0.5.

The zeros of G(y) are next examined.

The principal term of G(y) is ycosy, and thus

-(s)
. )(eg + 2nrr + iy) = cos(e + 2nTr + iy)

is non-zero for all y and integer n if e = 0. Noting that g > -0.5 has already

been shown to be a necessary condition, it may now be examined only as a

sufficiency requirement. Figure 12 illustrates the following:

(i) For 4 > -0.5, G(y) has exactly one zero in each interval

nTT < y < (n + 1)rr, n = 0,1,2, ....

(ii) For any , G(y) has a zero at y = 0, and that zero is simple.

The preceding observations, and noting that gsiny and -1/y - (y - 1/y)cosy

are both odd functions of y, imply that [ > -0.5 is sufficient to insure that

G(y) has, for sufficiently large k, exactly 4k + 1 zeros for -2kTr < y < 2kTr.

The relative positions of the zeros of F (y) and G(y) must next be ex-

amined. It is first noted that for 4 = -0.5, F(y) has a double root at the

origin. Since this obviously would not allow the zeros of F(y) and G(y) to

alternate, the condition must be changed to 4 > -0.5. Supposenow that

4 > 0.5. The zero locations of F(y) may then be described by
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THE ZEROS OF G(y)
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0 < Yo < n/2

Y20 = + 02

(n - 1)n < Yn < (n - 1)n +T/2, n odd

Yno = (n - 1)r + On, n even

where 0 < e <n /2 and En is defined by

cos((n - 1)T + en) -0.5 = ((n - l) + 

- 1/((n - 1)TT + en)) sin((n + l) Oen), n even.

Similarly, the zero locations for G(y) are given by

Y 0 = 0

TT/2 < Y'20 < T

y' 30 = r + e '

(n - 2)n + r/2 < y' < (n - l1) , n even

(n - 2) + n' n odd,

where 0 ' is defined by

sin((n - 2)r + n ') = - l/((n - 2)n + en') - ((n - 2)rr + 8n'

- 1/((n - 2)TT + e '))cos((n - 2)T + On'), n odd.

It is clear that if n > /2, Yn' lies to the right of n-,0' If n < rr/2,

it must be shown that

e <e'
n n

for all appropriate n. While a lengthy and complicated analysis is required

to prove this result rigorously, the following geometric argument can be

briefly presented. A short study of Figure 11 shows that e will be large

(slightly less than rr/2 radians) only if g is in some sense large and y in
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some sense small. Figure 12, however, indicates that these same conditions

result in 0n' being very large, approaching Tr radians. On the other hand,

a brief calculation shows that 0 ' is at least 1.5 radians, and the minimal

values occur for g small. But if g is small, the zeros of F(y) lie only

slightly to the right of odd multiples of rT, implying that n is indeed less

than 1.5 radians.

Similar (but somewhat simpler) arguments for -0.5 < g < 0.5 show

that g > -0.5 is indeed a sufficient condition for the zeros of F(y) and G(y)

to alternate. For the final step, it must be shown that C > -0.5 implies that

F (y)G'(y) - F'(y)G(y) > 0

for some y. The appropriate derivatives are given by

F'(y) =-a siny- (y- l/y) cosy- (1 + l/y 
2
) siny,

G'(y) =acosy - (y - 1/y)siny + (1 + 1/y2 ) cosy - 1/y 2

Suppose y = 0 is chosen. Then G(y) = 0,

F(0) = + lim siny -0.5
y -O

= + 0.5

and

G' (0) = +lim siny + lim c 2 - 2 +1
y-0O y-O y y

+ 1.5.

Thus

F(0)G'(0) = ( + 0.5)(g + 1.5)

and F(0)G'(0) > 0 if 4 > -0.5. Finally, then, the zeros are all strictly in

the left half plane if and only if a y < 3 .0.
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VI. CONCLUSIONS

Evans ([ 8] , p. 415), in speaking of the multiplier-accelerator

econometric model, states that "... second-order difference equations are

no longer adequate to determine the solution in models with more realistic

and complicated lag structures." To overcome these problems, he suggests

that an appropriate approach would be to "... state a more general theory

of the cycle, estimate this theory empirically, and examine its behavior by

actual simulation." While it might certainly be true that a more general

theory of economy is needed, it is not so clear that any such new theory

should be examined from an empirical point of view. It is certainly possible

that a mathematical structure more complex than second-order difference

equations might very accurately model such a new theory.

To support this conjecture, this work has presented a new modelling

form, the coupled renewal-differential equation system, and with this

structure modelled the Austrian theory of business cycles.

Mathematical results presented include conditions insuring the

existence, uniqueness and Laplace transformability of solutions, and an

illustration of the utilization of a differential equation solving subroutine

in calculating actual numerical solutions. Stability results include a

generalization of results due to Pontryagin [13] which gives necessary and

sufficient conditions for all the system poles to lie strictly in the left half

plane. Further numerical results include a qualitative comparison of the

Austrian theory conclusions and the types of solutions the mathematical

model possesses, and finally an illustration of the numerical use of the

stability conditions.

While the Austrian theory of business cycles has been the only

economic theory modelled, no attempt has been made to either support or

reject, through the numerical results, the conclusions of the Austrian school.

This particular theory was used only in, an illustrative capacity to indicate

the possible use of the modelling structure.
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